

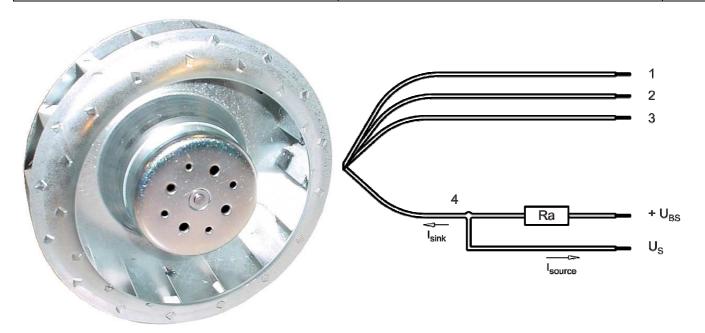
REF175-30/18/2TDA-161

INHALT

1	A	Allgemeines	3
2	N	Mechanik	3
	2.1 2.2	Allgemeines	3
3	В	Betriebsdaten	5
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Elektrische Betriebsdaten Elektrische Schnittstelle - Ausgang Elektrische Merkmale Daten gemäß ErP Richtlinie Aerodynamik	6 7 8
4	U	Jmwelt	11
	4.1 4.2		
5	S	Sicherheit	12
	5.1 5.2	Sicherheitszulassung	12
6	Z	Zuverlässigkeit	12
	6.1	Allgemein	12

1 Allgemeines

Lüfterart	Radialgebläse ohne Gehäuse mit Einlaufdüse	
Drehrichtung auf Rotor gesehen	Rechts	
Förderrichtung	Lufteintritt axial, Luftaustritt radial	
Lagerung	Kugellager	
Einbaulage - Welle	Beliebig	


2 Mechanik

2.1 Allgemeines

Tiefe	54,3 mm	
Durchmesser	175,0 mm	
Gewicht	0,933 kg	
Gehäusewerkstoff		
Flügelradwerkstoff	Metall	

2.2 Anschluss

Elektrischer Anschluss	Einzellitzen	
Leitungslänge	L = 425 mm	
Toleranz	+- 10,0 mm	
Schlauchlänge	S = 115 mm	
Toleranz	+- 5,0 mm	

Litze	Farbe	Funktion	Litzenquerschnitt	Isolationsdurchmesser
1	rot	+ UB	AWG 20	2,05 mm
2	blau	- GND	AWG 20	2,05 mm
3	violett	CONTR	AWG 22	1,3 mm
4	weiß	Tacho	AWG 22	1,3 mm

01.02.2019 Seite 3 von 13

Die in der Anschlusszeichnung zusätzlich dargestellten und für den Gebrauch erforderlichen externen Bauteile sind nicht im Lieferumfang enthalten.

Litzen 1 - 2: AWG20 (Isolationsdurchmesser 2,05mm) Litzen 3 - 4: AWG22 (Isolationsdurchmesser 1,35mm)

01.02.2019 Seite 4 von 13

3 Betriebsdaten

3.1 Elektrische Schnittstelle - Eingang

Sollwerteingang Analog

Eigenschaften

Sollwert - Spannungsbereich	0 V - 10 V

Info zur Kennlinie:

0 V - 0,7 V: 0 1/min

0,7 V - 1,0 V: 800 1/min (entspricht min. Drehzahl)

1,0 V - 9,0 V: linear steigende Kennlinie

9,0 V - 10,0 V: 4.400 1/min (entspricht max. Drehzahl) 0,7 V: 800 1/min (Lüfter ein, von 0 V kommend)

0,5 V: 600 1/min bzw. 0 1/min (Lüfter stellt aus, von 10 V kommend)

01.02.2019 Seite 5 von 13

3.2 Elektrische Betriebsdaten

Messbedingungen: Normalluftdichte = 1,2 kg/m3; TU = 23° +/- 3° ; Mo torachse waagerecht; Einlaufzeit bei

jeder Einstellung 5 Minuten (wenn nicht anders spezifiziert).

Im Ansaug- und Ausblasbereich darf im Abstand von 0,5 m kein massives Hindernis

angeordnet sein.

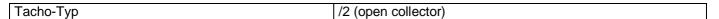
Messaufbau:	Gemessen zwischen zwei Stahlplatten
Stahlplatte:	180 mm x 180 mm
Einlaufdüse:	D: 125,5 mm; R: 10 mm
Plattenabstand:	64,5 mm
Überlappung Rad / Einlaufdüse:	2 mm

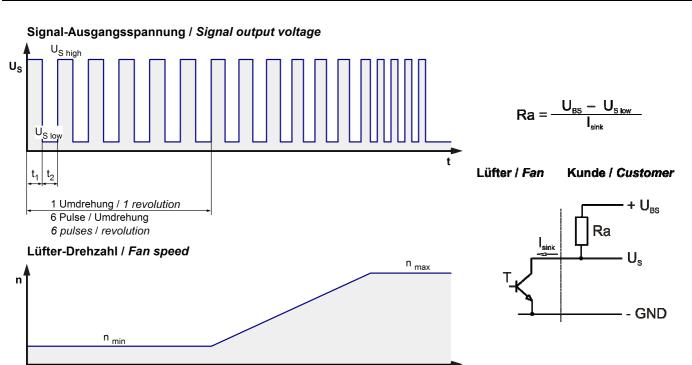
 $\Delta p = 0$: entspricht freiblasend (siehe Kapitel Aerodynamik)

I: entspricht arithm. Strommittelwert

Bezeichnung	Bedingung	
U Contr. 0001	U Contr.: 10 V	

Die Daten bei 5V sind keine FK-Merkmale und brauchen daher nicht geprüft werden. Elektrische Betriebsdaten mit Einlaufdüse (für Prüfzwecke)


nach 10er Protokoll von Werk Herbolzheim.


Merkmale	Bedingung	Symbol		Werte	
Spannungsbereich		U	36 V		72 V
Nennspannung		U_N		48 V	
Leistungsaufnahme	$\Delta p = 0$		94 W	154 W	158 W
Toleranz	U Contr. 0010	Р	+- 15 %	+- 10 %	+- 10 %
Stromaufnahme	$\Delta p = 0$		2.600 mA	3.200 mA	2.200 mA
Toleranz	U Contr.0010	I	+- 15 %	+- 10 %	+- 10 %
Drehzahl	$\Delta p = 0$		3.800 1/min	4.400 1/min	4.400 1/min
Toleranz	U Contr. 0010	n	+- 7,5 %	+- 7,5 %	+- 7,5 %

01.02.2019 Seite 6 von 13

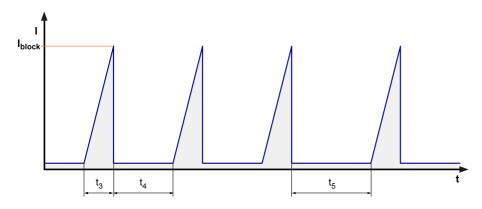
3.3 Elektrische Schnittstelle - Ausgang

Merkmale		Bemerkung	Werte	
Tachobetriebsspannung	U_{BS}		<= 60 V	
Tachosignal Low	U _{S low}	I sink: 2 mA	<=0,4 V	
Tachosignal High	$U_{S\;high}$	I source: 0 mA	<=60 V	
Maximaler Sink-Strom	I _{sink}		<= 20 mA	
Maximaler Source-Strom			0 mA	
Externer Arbeitswiderstand		Externer Arbeitswiderstand Ra von UBS nach US erforderlich. Alle		
Externer Arbeitswiderstand		Spannungen gegen GND gemessen.		
Tachofrequenz		(6 x n) / 60	440 Hz	
Galvanisch getrennter Tacho		Nein		
Flankensteilheit			=> 0,5 V/us	

n = Drehzahl pro Minute (1/min)

Anmerkung:

Das Tachosignal ist im Stillstand immer auf High. Das Tachsignal wird bereits als statisch High ausgegeben, wenn der Lüfter noch dreht und durch die Sollwertvorgabe eine Drehzahl von Null eingestellt wird. Das Tachosignal wird erst nach erfolgtem Anlauf zugeschaltet.


3.4 Elektrische Merkmale

Elektronikfunktion	Drehzahl-Regelung	
Verpolschutz	P-Kanal FET	

01.02.2019 Seite 7 von 13

Max. Falschpolstrom bei U _N	$I_F \leq 5 \text{ mA}$	
Blockierschutz	Elektronischer Wiederanlauf	
Blockierstrom bei U _N	I _{block} ca. 1.250 mA	
Blockiertakt	t ₃ / t ₄ typisch: 2,7 s / 10 s	

Blockiertakt t5: 40,0s

Nach 4Zyklen mit t3 zu t4 kommt eine nicht Bestromung von t5 mit 40s.

3.5 Daten gemäß ErP Richtlinie

Installations-/Effizienzkategorie	A / static
Drehzahlregelung	integriert
Spezifisches Verhältnis	1,00497
Wirkungsgradvorgabe 2015	42,9 %
Gesamtwirkungsgrad	42,3 %
Effizienzklasse	62
Leistungsaufnahme	153 W
Drehzahl	4.370 1/min

Alle Werte gelten für das Wirkungsgradoptimum.

Die Angaben zum Herstellungsjahr des Produktes befinden sich auf dem Klebeschild.

3.6 Aerodynamik

Messbedingungen: Gemessen mit einem saugseitigen Doppelkammerprüfstand nach DIN EN ISO 5801.

Normalluftdichte = 1,2 kg/m3; $TU = 23^{\circ}C + /-3^{\circ}C$;

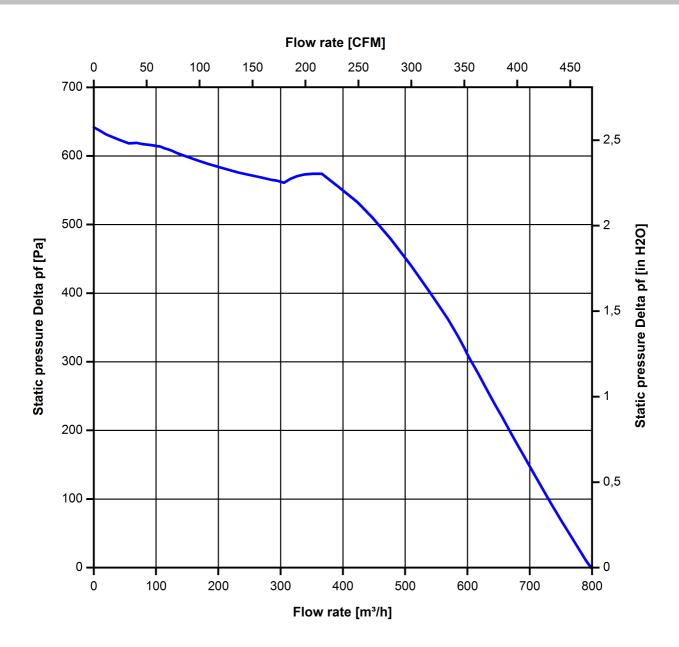
Im Ansaug- und Ausblasbereich darf im Abstand von 0,5 m kein massives Hindernis

angeordnet sein. Motorachse waagerecht.

Die Angaben gelten nur unter den angegebenen Messbedingungen und können sich durch die Einbaubedingungen verändern. Bei Abweichungen zum Normaufbau sind die Kennwerte

im eingebauten Zustand zu überprüfen.

Messaufbau:	Gemessen zwischen zwei Stahlplatten		
Stahlplatte:	180 mm x 180 mm		
Einlaufdüse:	D: 125,5 mm; R: 10 mm		
Plattenabstand:	64,5 mm		
Überlappung Rad / Einlaufdüse:	2 mm		


a.) Betriebsbedingung:

4.400 1/min freiblasend	U Contr. 10 V	

Max. freiblasender Volumenstrom ($\Delta p = 0 / \dot{V} = max.$)	800,0 m3/h	
Max. Staudruck ($\Delta p = \text{max.} / \dot{V} = 0$)	640 Pa	

01.02.2019 Seite 9 von 13

3.7 Akustik

Messbedingungen: Schalldruckpegel: Der Abstand des Mikrofons zur Ansaugöffnung beträgt 1 m.

Gemessen im reflektionsarmen Raum mit einem Grundschallpegel von Lp(A) < 5 dB(A).

Weitere Messbedingungen siehe Kapitel Aerodynamik.

a.) Betriebsbedingung:

4.400 1/min freiblasend	U Contr. 10 V	

4 Umwelt

4.1 Allgemein

Minimal zulässige Umgebungstemperatur TU min.	-20 ℃	
Maximal zulässige Umgebungstemperatur TU max.	60 ℃	
Minimal zulässige Lagerungstemperatur TL min.	-40 ℃	
Maximal zulässige Lagertemperatur TL max.	80 ℃	

4.2 Klimatische Anforderungen

Feuchteanforderung	Feuchte Wärme, konstant; gemäß DIN EN 60068-2-78, 14 Tage	
Wasserbelastungen	Keine	
Staubanforderungen	Keine	
Salznebelanforderungen	Keine	

Zulässiger Einsatzbereich:

Das Produkt ist für den Einsatz in geschlossenen, wettergeschützten Räumen, mit kontrollierter Temperatur und Feuchte bestimmt. Direkte Wassereinwirkung ist zu vermeiden.

Verschmutzungsgrad 1 (gemäß DIN EN 60664-1)

Es tritt keine oder nur trockene, nicht leitfähige Verschmutzung auf. Die Verschmutzung hat keinen Einfluss.

Schärfegrade und Spezifikationswerte bei den zuständigen Entwicklungsabteilungen anfragen.

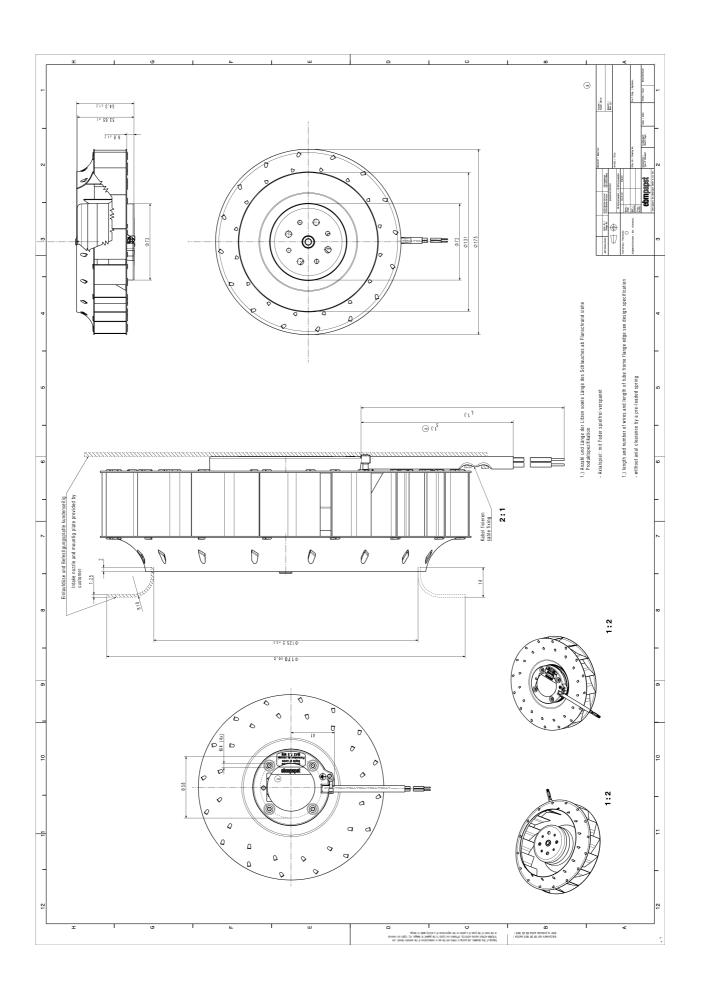
01.02.2019

5 Sicherheit

5.1 Elektrische Sicherheit

Spannungsfestigkeit		
DIN EN 60950 (VDE 0805) und DIN EN 60335 (VDE 0700)		
A.) Typprüfung	1000 VAC / 1 Min.	
Messbedingungen: Nach 48h Lagerung bei 95% r.F. und		
25℃. Hierbei darf kein Überschlag oder Durchschlag		
erfolgen. Alle Anschlüsse gemeinsam gegen Masse!		
B.) Stückprüfung	1700 VDC / 1 Sec.	
Messbedingung: Bei Raumklima. Hierbei darf kein Überschlag		
oder Durchschlag erfolgen. Alle Anschlüsse gemeinsam		
gegen Masse!		
Isolationswiderstand	RI > 10 MOhm	
Messbedingung: Nach 48h Lagerung bei 95% r.F. und 25°C		
gemessen mit U=500 VDC/1 Min.		
Luft und Kriechstecken	1,0 mm / 1,5 mm	
Schutzklasse		

5.2 Sicherheitszulassung


CE	EG-Konformitätserklärung	Ja
EAC	Eurasische Konformität	Ja
UL	Underwriters Laboratories	Ja / UL507, Electric Fans
VDE	,	Ja / Zulassung nach EN 60950 (VDE 0805) - Einrichtungen
	Informationstechnik	der Informationstechnik
CSA	Canadian Standards Association	Ja / C22.2 No. 113 Fans and Ventilators
CCC	China Compulsory Certification	Ja / GB 12350 Safety Requirements for small Power Motors

6 Zuverlässigkeit

6.1 Allgemein

Lebensdauer L10 bei TU = 40 ℃	65.500 h	
Lebensdauer L10 bei TU max.	37.500 h	
Lebensdauer L10 nach IPC 9591 bei TU = 40 ℃	110.000 h	

