

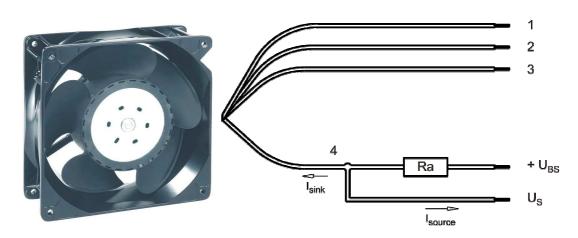
5318/2TDHHP

INHALT

1	AI	ligemeines	
2	M	lechanik	3
	2.1	Allgemeines	
	2.2	Anschluss	3
3	В	etriebsdaten	5
	3.1	Elektrische Schnittstelle - Eingang	<u> </u>
	3.2	Elektrische Betriebsdaten	6
	3.3	Elektrische Schnittstelle - Ausgang	
	3.4		7
	3.5	Aerodynamik	
	3.6	Akustik	
4	Uı	mwelt	11
	4.1	Allgemein	11
	4.2		11
5	Si	icherheit	12
	5.1	Elektrische Sicherheit	12
	5.2	Sicherheitszulassung	12
6	Zι	uverlässigkeit	12
	6.1	Allgemein	12

1 Allgemeines

Lüfterart	Axial	
Drehrichtung auf Rotor gesehen	Links	
Förderrichtung	Über Stege saugend	
Lagerung	Kugellager	
Einbaulage - Welle	Beliebig	


2 Mechanik

2.1 Allgemeines

Breite	140,0 mm	
Höhe	140,0 mm	
Tiefe	51,0 mm	
Gewicht	0,900 kg	
Gehäusewerkstoff	Metall	
Flügelradwerkstoff	Kunststoff	
Max. Anzugsmoment bei Montage über beide	Litzenausführungsecke: 440 Ncm	
Befestigungsflansche	Restliche Ecken: 600 Ncm	
Schraubengröße	ISO 4762 - M4 entfettet, ohne zusätzliche	
	Abstützung und ohne Unterlegscheibe	

2.2 Anschluss

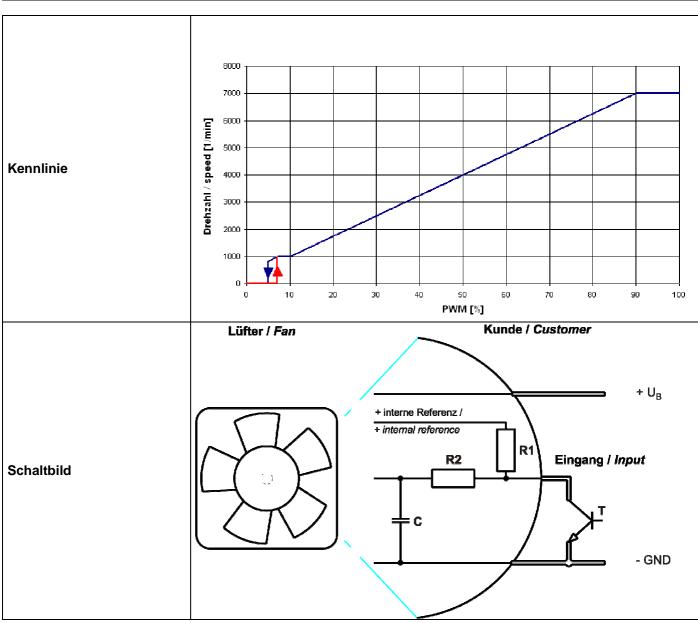
Elektrischer Anschluss	Einzellitzen	
Leitungslänge	L = 310 mm	
Toleranz	+- 10,0 mm	
Schlauchlänge	S = 10 mm	
Toleranz	+- 2,0 mm	

Litze	Farbe	Funktion	Litzenquerschnitt	Isolationsdurchmesser
1	rot	+ UB	AWG 22	1,3 mm
2	blau	- GND	AWG 22	1,3 mm
3	violett	PWM	AWG 22	1,3 mm
4	weiß	Tacho	AWG 22	1,3 mm

02.02.2019 Seite 3 von 13

Die in der Anschlusszeichnung zusätzlich dargestellten und für den Gebrauch erforderlichen externen Bauteile sind nicht im Lieferumfang enthalten.

02.02.2019 Seite 4 von 13


3 Betriebsdaten

3.1 Elektrische Schnittstelle - Eingang

Sollwerteingang	PWM
U U	

Eigenschaften

Sollwerteingangstyp	Open collector	
PWM - Frequenz		1 kHz - 10 kHz
		typisch: 2 kHz

Der abgebildete Pull-Up Widerstand R1 zur internen Referenz (+5V) hat 4.7kOhm.

Drehzahlregelung:

Über Pulsweitenmodulation (PWM) 0...100%.

02.02.2019 Seite 5 von 13

Open collector in Bezug auf Signalground

Transistor Anforderungen:

Uce max. >= 12V; Isink max. >= 5mA; Uce sat. <= 0,15V

Info zur Kennlinie:

0% - <=7% PWM: 0 1/min (Lüfter aus)

7% PWM: 1.000 1/min (Lüfter ein von 0% PWM kommend)

7% - 10 % PWM: 1.000 1/min (entspricht min. Drehzahl)

10% - 90% PWM: Linear steigende Kennlinie)

90% - 100% PWM: 7.000 1/min (entspricht max. Drehzahl)

5% PWM: 800 1/min bzw. 0 1/min (Lüfter stellt aus, von 100% PWM kommend)

3.2 Elektrische Betriebsdaten

Messbedingungen: Normalluftdichte = 1,2 kg/m3; $TU = 23^{\circ}C + /-3^{\circ}C$; Mo torachse waagerecht; Einlaufzeit bei

jeder Einstellung 5 Minuten (wenn nicht anders spezifiziert). Im Ansaug- und Ausblasbereich

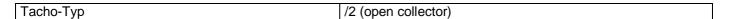
darf im Abstand von 0,5 m kein massives Hindernis angeordnet sein.

 $\Delta p = 0$: entspricht freiblasend (siehe Kapitel Aerodynamik)

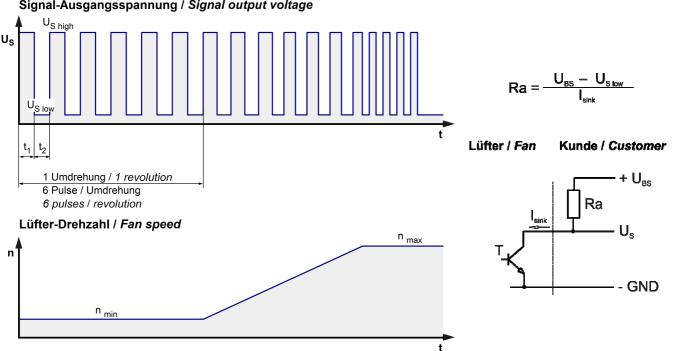
I: entspricht arithm. Strommittelwert

Bezeichnung	Bedingung	
PWM 0001	PWM: 100 %; f: 2 kHz	

100% PWM oder Sensorabriss (offener Steuereingang)


Merkmale	Bedingung	Symbol		Werte	
Spannungsbereich		U	36 V		72 V
Nennspannung		U_N		48 V	
Leistungsaufnahme	$\Delta p = 0$		64 W	67 W	68 W
Toleranz	PWM 0010	Р	+- 10 %	+- 10 %	+- 10 %
Stromaufnahme	$\Delta p = 0$		1.790 mA	1.400 mA	950 mA
Toleranz	PWM 0010	I	+- 10 %	+- 10 %	+- 10 %
Drehzahl	$\Delta p = 0$		7.000 1/min	7.000 1/min	7.000 1/min
Toleranz	PWM 0010	n	+- 5 %	+- 5 %	+- 5 %
Anlaufstrom			_	<= 2.500 mA	




02.02.2019

Seite 6 von 13

3.3 **Elektrische Schnittstelle - Ausgang**

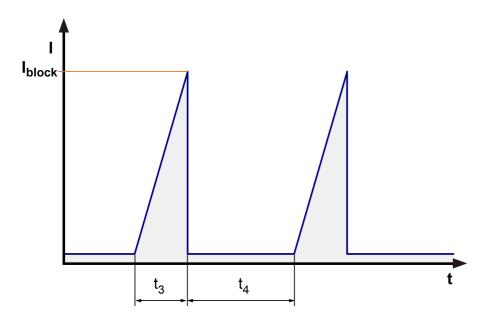
Merkmale		Bemerkung	Werte
Tachobetriebsspannung	U _{BS}		<= 60,0 V
Tachosignal Low	U _{S low}	I sink: 2 mA	<= 0,4 V
Tachosignal High	U _{S high}	I source: 0 mA	<=60,0 V
Maximaler Sink-Strom	I _{sink}		<= 20 mA
Tachofrequenz		(6 x n) / 60	700 Hz @ 7.000 1/min
Galvanisch getrennter Tacho		Nein	
Flankensteilheit			=> 0,5 V/us

n = Drehzahl pro Minute (1/min)

Anmerkung:

Das Tachosignal ist im Stillstand immer auf High. Das Tachsignal wird bereits als statisch High ausgegeben, wenn der Lüfter noch dreht und durch die Sollwertvorgabe eine Drehzahl von Null eingestellt wird. Das Tachosignal wird erst nach erfolgtem Anlauf zugeschaltet.

3.4 **Elektrische Merkmale**


Flat to a 21 fear life a	Dark-ald Darators	1
Elektronikfunktion	Drehzahl-Regelung	
Verpolschutz	P-Kanal FET	
Max. Falschpolstrom bei U _N	$I_F \ll 5 \text{ mA}$	
Blockierschutz	Elektronischer Wiederanlauf	
Blockierstrom bei U _N	I _{block} ca. 2.000 mA	

Seite 7 von 13 02.02.2019

Blockiertakt	t ₃ / t ₄ typisch: 2,0 s / 10,0 s	
Interne Sicherung	Littelfuse NANO2 > Very Fast-Acting > 451/453 Series	
	6,3A / 125V (Art.Nr.: 045106.3MRL)	1
Spannungsüberwachung *)	Einschalten bei U _B > 34 V oder < 78 V	
	Ausschalten bei U _B < 32 V oder > 80 V	

^{*)} Im Lüfter ist eine Unter- bzw. Überspannungsüberwachung integriert, diese schaltet die Endstufe und damit den Lüfter ab wenn die Versorgungsspannung außerhalb des angegebenen Bereichs ist.

Interne Elkos 2x220uF/75V haben Einschaltstrombegrenzung, der immer noch vorhandene Peak entsteht durch Keramische Kondensatoren.

3.5 Aerodynamik

Messbedingungen: Gemessen mit einem saugseitigen Doppelkammerprüfstand nach DIN EN ISO 5801.

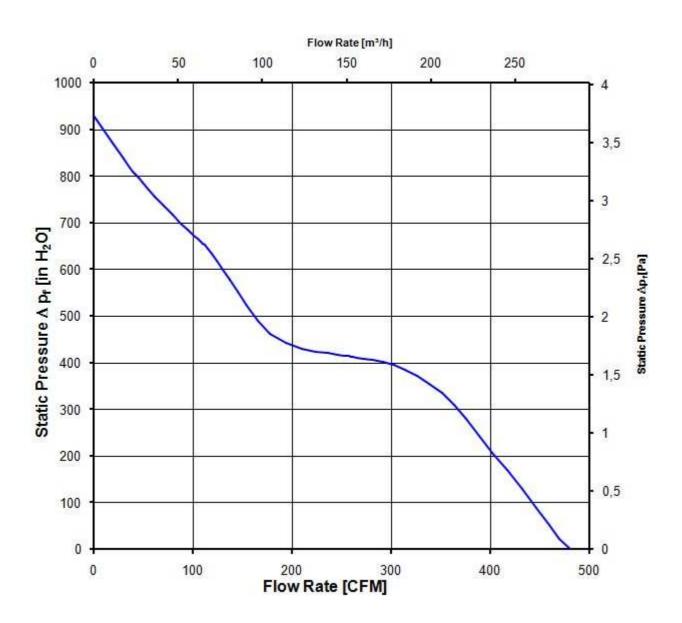
Normalluftdichte = 1,2 kg/m3; $TU = 23^{\circ}C + /-3^{\circ}C$;

Im Ansaug- und Ausblasbereich darf im Abstand von 0,5 m kein massives Hindernis

angeordnet sein. Motorachse waagerecht.

Die Angaben gelten nur unter den angegebenen Messbedingungen und können sich durch die Einbaubedingungen verändern. Bei Abweichungen zum Normaufbau sind die Kennwerte

im eingebauten Zustand zu überprüfen.


a.) Betriebsbedingung:

7.000 1/min freiblasend	PWM 100 %; f: 2 kHz	

Max. freiblasender Volumenstrom ($\Delta p = 0 / \dot{V} = max.$)	480 m3/h	
Max. Staudruck ($\Delta p = \text{max.} / \dot{V} = 0$)	930 Pa	

02.02.2019 Seite 9 von 13

3.6 Akustik

Messbedingungen: Schalldruckpegel: Der Abstand des Mikrofons zur Ansaugöffnung beträgt 1 m.

Schallleistung: Nach DIN 45635 Teil 38 (ISO 10302)

Gemessen im reflektionsarmen Raum mit einem Grundschallpegel von Lp(A) <5 dB(A).

Weitere Messbedingungen siehe Kapitel Aerodynamik.

a.) Betriebsbedingung:

7.000 1/min freiblasend	PWM 100 %; f: 2 kHz	

Optimaler Betriebspunkt	320 m3/h @ 340 Pa	
Schallleistung im optimalen Betriebspunkt	8,2 bel(A)	
Schalldruck in Gummiseilen freiblasend	75.0 dB(A)	

4 Umwelt

4.1 Allgemein

Minimal zulässige Umgebungstemperatur TU min.	-20 ℃	
Maximal zulässige Umgebungstemperatur TU max.	70 ℃	
Minimal zulässige Lagerungstemperatur TL min.	-40 ℃	
Maximal zulässige Lagertemperatur TL max.	80 ℃	

4.2 Klimatische Anforderungen

Feuchteanforderung	Feuchte Wärme, konstant; gemäß DIN EN 60068-2-78, 14 Tage	
Wasserbelastungen	Keine	
Staubanforderungen	Keine	
Salznebelanforderungen	Keine	

Zulässiger Einsatzbereich:

Das Produkt ist für den Einsatz in geschlossenen, wettergeschützten Räumen, mit kontrollierter Temperatur und Feuchte bestimmt. Direkte Wassereinwirkung ist zu vermeiden.

Verschmutzungsgrad 1 (gemäß DIN EN 60664-1)

Es tritt keine oder nur trockene, nicht leitfähige Verschmutzung auf. Die Verschmutzung hat keinen Einfluss.

Schärfegrade und Spezifikationswerte bei den zuständigen Entwicklungsabteilungen anfragen.

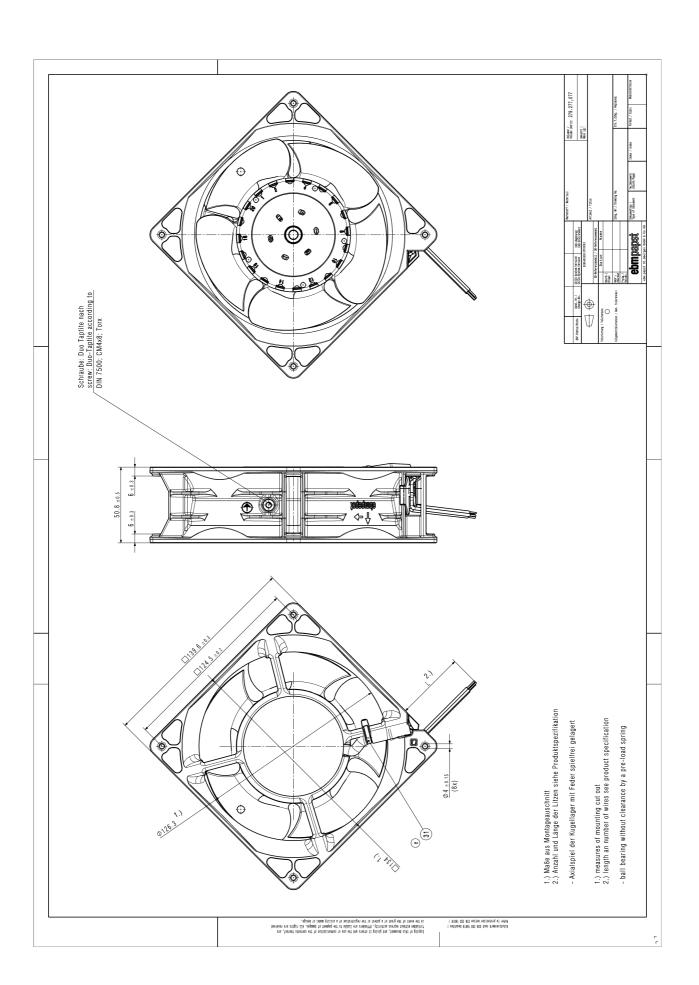
5 **Sicherheit**

5.1 **Elektrische Sicherheit**

Spannungsfestigkeit		
DIN EN 60950 (VDE 0805) und DIN EN 60335 (VDE 0700)		
A.) Typprüfung	1000 VAC / 1 Min.	
Messbedingungen: Nach 48h Lagerung bei 95% r.F. und		
25℃. Hierbei darf kein Überschlag oder Durchschlag		
erfolgen. Alle Anschlüsse gemeinsam gegen Masse!		
B.) Stückprüfung	1700 VDC / 1 Sec.	
Messbedingung: Bei Raumklima. Hierbei darf kein Überschlag		
oder Durchschlag erfolgen. Alle Anschlüsse gemeinsam		
gegen Masse!		
Isolationswiderstand	RI > 10 MOhm	
	IXI > 10 IVIOTIIII	
Messbedingung: Nach 48h Lagerung bei 95% r.F. und 25°C		
gemessen mit U=500 VDC/1 Min.		
Luft und Kriechstecken	1,0 mm / 1,5 mm	
Schutzklasse		

5.2 Sicherheitszulassung

CE	EG-Konformitätserklärung	Nein
EAC	Eurasische Konformität	Ja
UL	Underwriters Laboratories	Ja / UL geprüft bei CSA nach UL507, Electric Fans
VDE	Verband der Elektrotechnik, Elektronik und	Ja / Zulassung nach EN 60950 (VDE 0805) - Einrichtungen
	Informationstechnik	der Informationstechnik
CSA	Canadian Standards Association	Ja / C22.2 No. 113 Fans and Ventilators
CCC	China Compulsory Certification	Ja / GB 12350 Safety Requirements for small Power Motors


Die Sicherheitszulassungen werden eingehalten bis: U Zul. max.:72,0 V @ TU Zul. max.: 70,0 $^{\circ}$ C

6 Zuverlässigkeit

Allgemein 6.1

Lebensdauer L10 bei TU = 40 ℃	62.500 h	
Lebensdauer L10 bei TU max.	30.000 h	
Lebensdauer L10 nach IPC 9591 bei TU = 40 ℃	105.000 h	

