

8314 NHH

INHALT

1	Allo	gemeinesgemeines	3
2	2 Mechanik		
_	2.1 2.2	Allgemeines	3
3	Bet	triebsdaten	5
	3.1 3.2 3.3 3.4	Elektrische Betriebsdaten Elektrische Merkmale Aerodynamik Akustik	5 7
4	Um	welt	8
	4.1 4.2 4.3	Allgemein Klimatische Anforderungen EMV	8
5	Sic	herheit	10
	5.1 5.2	Elektrische Sicherheit	
6	Zuv	verlässigkeit	10
	6.1	Allgemein	10

1 Allgemeines

Lüfterart	Axial	
Drehrichtung auf Rotor gesehen	Links	
Förderrichtung	Über Stege blasend	
Lagerung	Kugellager	
Einbaulage - Welle	Beliebig	

2 Mechanik

2.1 Allgemeines

Breite	80,0 mm	
Höhe	80,0 mm	
Tiefe	32 mm	
Gewicht	0,1 kg	
Gehäusewerkstoff	Kunststoff	
Flügelradwerkstoff	Kunststoff	
Max. Anzugsmoment bei Montage über beide	Litzenausführungsecke: 100 Ncm	
Befestigungsflansche	Restliche Ecken: 100 Ncm	
Schraubengröße	ISO 4762 - M4 entfettet, ohne zusätzliche	
	Abstützung und ohne Unterlegscheibe	

2.2 Anschluss

Elektrischer Anschluss	Einzellitzen	
Leitungslänge	L = 310 mm	
Toleranz	+- 10,0 mm	

31.01.2019 Seite 3 von 11

Litze	Farbe	Funktion	Litzenquerschnitt	Isolationsdurchmesser
1	rot	+ UB	AWG 26	1,35 mm
2	blau	- GND	AWG 26	1,35 mm

31.01.2019 Seite 4 von 11

3 Betriebsdaten

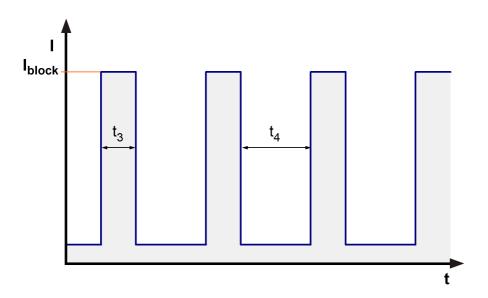
3.1 Elektrische Betriebsdaten

Messbedingungen: Normalluftdichte = 1,2 kg/m3; TU = 23℃ +/- 3℃; Mo torachse waagerecht; Einlaufzeit bei

jeder Einstellung 5 Minuten (wenn nicht anders spezifiziert). Im Ansaug- und Ausblasbereich

darf im Abstand von 0,5 m kein massives Hindernis angeordnet sein.

 Δp = 0: entspricht freiblasend (siehe Kapitel Aerodynamik) I: entspricht arithm. Strommittelwert


Merkmale	Bedingung	Symbol		Werte	
Spannungsbereich		U	12 V		28 V
Nennspannung		U _N		24 V	
Leistungsaufnahme	$\Delta p = 0$		1,2 W	5 W	6,8 W
Toleranz	0010	Р	+- 17,5 %	+- 12,5 %	+- 15 %
Stromaufnahme	$\Delta p = 0$		100 mA	210 mA	243 mA
Toleranz	0010	I	+- 17,5 %	+- 12,5 %	+- 15 %
Drehzahl	$\Delta p = 0$		3.200 1/min	6.300 1/min	7.100 1/min
Toleranz	0010	n	+- 12,5 %	+- 7,5 %	+- 10 %
Anlaufstrom				1.500 mA	

Elektrische Merkmale 3.2

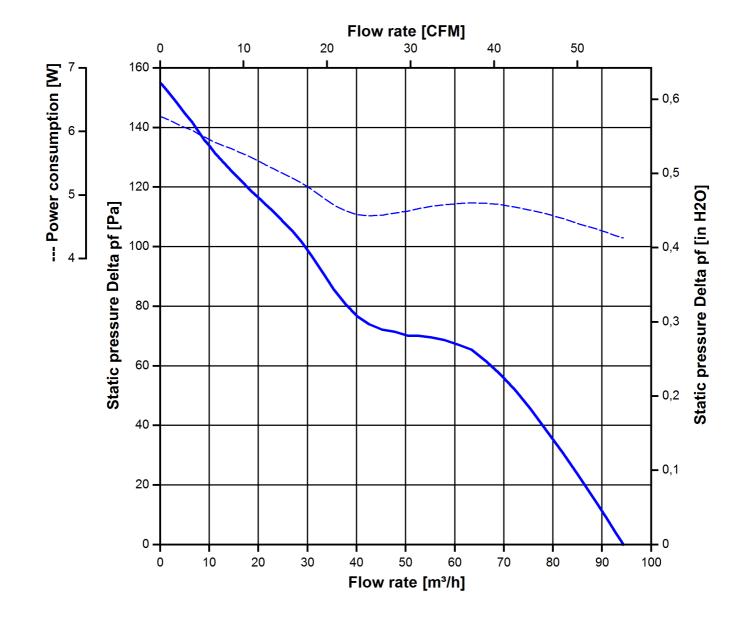
Elektronikfunktion	Keine	
Verpolschutz	Verpolschutzdiode	
Max. Falschpolstrom bei U _N	$I_F \leq 500 \text{ uA}$	
Blockierschutz	Elektronischer Wiederanlauf	
Blockierstrom bei U _N	I _{block} ca. 1.500 mA	
Blockiertakt	t ₃ / t ₄ typisch: 0,16 s / 11,8 s	

31.01.2019 Seite 5 von 11

3.3 Aerodynamik

Messbedingungen:

Gemessen mit einem saugseitigen Doppelkammerprüfstand nach DIN EN ISO 5801. Normalluftdichte = 1,2 kg/m3; TU = 23C + /-3C;


Im Ansaug- und Ausblasbereich darf im Abstand von 0,5 m kein massives Hindernis angeordnet sein. Motorachse waagerecht.

Die Angaben gelten nur unter den angegebenen Messbedingungen und können sich durch die Einbaubedingungen verändern. Bei Abweichungen zum Normaufbau sind die Kennwerte im eingebauten Zustand zu überprüfen. Leistungsaufnahme des Lüftermotors bei Betrieb an Nennspannung. Die Leistungsaufnahme kann je nach Betriebsbedingung in der Anwendung höher sein.

a.) Betriebsbedingung:

6.300 1/min freiblasend
0.300 I/IIIII IIGIDIQ3EIIU

Max. freiblasender Volumenstrom ($\Delta p = 0 / \dot{V} = max.$)	94 m3/h	
Max. Staudruck ($\Delta p = \text{max.} / \dot{V} = 0$)	155 Pa	

31.01.2019 Seite 7 von 11

3.4 Akustik

Messbedingungen: Schalldruckpegel: Der Abstand des Mikrofons zur Ansaugöffnung beträgt 1 m.

Gemessen im reflektionsarmen Raum mit einem Grundschallpegel von Lp(A) <5 dB(A).

Weitere Messbedingungen siehe Kapitel Aerodynamik.

a.) Betriebsbedingung:

6.30	0 1/min freiblasend		

4 Umwelt

4.1 Allgemein

Minimal zulässige Umgebungstemperatur TU min.	-20 ℃	
Maximal zulässige Umgebungstemperatur TU max.	75 ℃	
Minimal zulässige Lagerungstemperatur TL min.	-40 ℃	
Maximal zulässige Lagertemperatur TL max.	30 ℃	

4.2 Klimatische Anforderungen

Feuchteanforderung	Feuchte Wärme, konstant; gemäß DIN EN 60068-2-78, 14 Tage	
Wasserbelastungen	Keine	
Staubanforderungen	Keine	
Salznebelanforderungen	Keine	

Zulässiger Einsatzbereich:

Das Produkt ist für den Einsatz in geschlossenen, wettergeschützten Räumen, mit kontrollierter Temperatur und Feuchte bestimmt. Direkte Wassereinwirkung ist zu vermeiden.

Verschmutzungsgrad 1 (gemäß DIN EN 60664-1)

Es tritt keine oder nur trockene, nicht leitfähige Verschmutzung auf. Die Verschmutzung hat keinen Einfluss.

Schärfegrade und Spezifikationswerte bei den zuständigen Entwicklungsabteilungen anfragen.

4.3 EMV

Art	Leitungsgebundene Störaussendung; Spannung; 150 kHz-30 MHz	
Gemäß	DIN EN 55032:2016-02	
Prüfschärfe / Grenzwert	Klasse B	
Ergebnis	Unterhalb Grenzwert Klasse B	

Art	Feldgebundene Störaussendung; 30 MHz - 1000 MHz	
Gemäß	DIN EN 55032:2016-02	
Prüfschärfe / Grenzwert	Klasse B	
Ergebnis	Unterhalb Grenzwert Klasse B	

Art	Prüfung der Störfestigkeit gegen Entladung statischer Elektrizität
Gemäß	DIN EN 61000-4-2:2001-12

Seite 8 von 11

Prüfschärfe / Grenzwert	Kontaktentladung +/- 4 kV; Luftentladung +/- 8 kV
Ergebnis	A: Die überwachte Funktion befindet sich während und nach der
	Prüfbeaufschlagung innerhalb des vorgesehenen Zustands.

Art	Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder	
Gemäß	DIN EN 61000-4-3:2006-12	
Prüfschärfe / Grenzwert	10 V/m; 80 - 1000 MHz; AM; m = 0,8; f = 1 kHz; 1%; t = 3 s	
Ergebnis	onis A: Die überwachte Funktion befindet sich während und nach der Prüfbeaufschlagung innerhalb des vorgesehenen Zustands.	

Art	Prüfung der Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder
Gemäß	DIN EN 61000-4-6:2001-12
Prüfschärfe / Grenzwert	10 Vrms; 150 kHz - 80 MHz; AM; m = 0,8; f = 1 kHz; 1%; t = 3 s
Ergebnis	A: Die überwachte Funktion befindet sich während und nach der Prüfbeaufschlagung innerhalb des vorgesehenen Zustands.

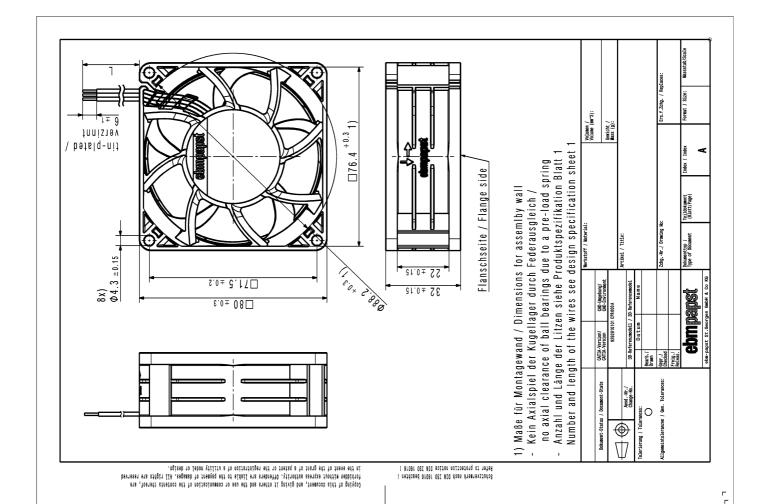
31.01.2019 Seite 9 von 11

5 Sicherheit

5.1 Elektrische Sicherheit

Spannungsfestigkeit		
DIN EN 60950 (VDE 0805) und DIN EN 60335 (VDE 0700)	500 V/A C / 4 NAir	
A.) Typprüfung Messbedingungen: Nach 48h Lagerung bei 95% r.F. und	500 VAC / 1 Min.	
25°C. Hierbei darf kein Überschlag oder Durchschlag		
erfolgen. Alle Anschlüsse gemeinsam gegen Masse!		
B.) Stückprüfung	850 VDC / 1 Sec.	
Messbedingung: Bei Raumklima. Hierbei darf kein Überschlag		
oder Durchschlag erfolgen. Alle Anschlüsse gemeinsam		
gegen Masse!		
Isolationswiderstand	RI > 10 MOhm	
Messbedingung: Nach 48h Lagerung bei 95% r.F. und 25°C		
gemessen mit U=500 VDC/1 Min.		
Luft und Kriechstecken	1,0 mm / 1,2 mm	
Schutzklasse	III	

5.2 Sicherheitszulassung


CE	EG-Konformitätserklärung	Ja
EAC	Eurasische Konformität	Ja
UL	Underwriters Laboratories	Ja / UL507, Electric Fans
VDE	Verband der Elektrotechnik, Elektronik und Informationstechnik	Ja / Zulassung nach EN 60950 (VDE 0805) - Einrichtungen der Informationstechnik
CSA	Canadian Standards Association	Ja / C22.2 No. 113 Fans and Ventilators
CCC	China Compulsory Certification	Nicht gefordert

6 Zuverlässigkeit

6.1 Allgemein

Lebensdauer L10 bei TU = 40 ℃	72.500 h	
Lebensdauer L10 bei TU max.	27.500 h	
Lebensdauer L10 nach IPC 9591 bei TU = 40 ℃	120.000 h	

